The breakthrough revolves around a device used to transform electrical impulses into beams of light. The device, called a modulator, is similar to what's used today in optical networks built by telecommunication companies. IBM scientists say they have found a way to shrink the modulator to a size where it can fit within a multi-core CPU.
The achievement, published in the journal Optics Express, is not all that's needed to one day bring data-carrying light beams to processors. However, it is an important first step toward production, which is about 10 to 15 years away, William Green, lead scientist on the project, told InformationWeek. "We've been working on this for sometime at IBM, and there's still a lot of work to do," he said. "It's one of the pieces within this larger network that we're designing and building."
The potential benefits of IBM's work to businesses and consumers are huge. For companies, it would mean having smaller computers that are far more powerful than today's machines, yet produce far less heat. Among the problems facing businesses today are the size and number of servers needed to process an ever-growing amount of data, which means larger expensive data centers. In addition, today's computers generate a lot of heat, requiring companies to spend more on power to cool them.
On the consumer side, a supercomputer in a box in the home could handle far more chores. Those tasks could range from operating lights and heating systems to processing and distributing video and more realistic computer games, which could include 3D environments in which characters move about seamlessly.
In the latest advancement, IBM has managed to shrink the modulator to a size in which one can be assigned to each core in a
Communications between processor cores today, which include quad-core chips from Intel (NSDQ: INTC) and AMD (NYSE: AMD), and IBM's nine-core Cell processor, is handled through copper wire that moves electrical impulses. IBM hopes to eventually replace that wire with a light beam that follows a tiny silicon strip, called a silicon nanophotonic wave guide, to its destination. Light carries more data in the same amount of time as copper by being 100 times faster.
In terms of power consumption, IBM has managed to reduce the usage of its tiny modulators in the lab from several hundred milliwatts to 50 milliwatts, Green said. IBM is working to bring power consumption down even further.
No comments:
Post a Comment